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Introduction

Setup

m Consider a random variable X with known distribution F
and the objective of computing

where {X € C} is thought as rare in the sense that p is
small.

m Assume that no analytical solution is known.

m The event is rare so standard Monte Carlo simulation is
ineffective.
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Introduction

The idea

m Construct a Markov chain (X;);>o having
Fc()=P(X e-]X eC)

as its invariant distribution.
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Introduction

The idea

m Construct a Markov chain (X;);>o having
Fc()=P(X e-]X eC)

as its invariant distribution.

m Then extract information about the normalising constant
from the sample.
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Definition

m Construct a Markov chain (X;);>o via MCMC sampler
having F¢ as its invariant distribution.
m For any distribution V such that V <« F¢ consider

u(Xx) = 3—\F/(X)|{x eC}.
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Definition

m Construct a Markov chain (X;);>o via MCMC sampler
having F¢ as its invariant distribution.
m For any distribution V such that V <« F¢ consider

u(Xx) = 3—\F/(X)|{x eC}.

® Then
1

dv 1
Er. (u(X)| = —dF :—/dV:
Fe[u(X)] cdF ¢ p e p
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Definition

m Construct a Markov chain (X;);>o via MCMC sampler
having F¢ as its invariant distribution.
m For any distribution V such that V <« F¢ consider

dv
u(x) = gz (X €C.
m Then
av 1 1
EFC [U(X)] — c ﬁdFC — BLdV — 6

m Motivates the following expression as an estimate for p
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Design issues

For a sample (Xi)i>o from a MCMC sampler, then

T-1 _

b= (X u)
t=0

u(X) = ‘;—\F/(xn{x e C}.
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Design issues

For a sample (Xi)i>o from a MCMC sampler, then

T-1 _

b= (X u)
t=0

u(X) = ‘;—\F/(xn{x e C}.

m Design of the MCMC sampler: crucial to control the
dependence of the Markov chain.
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Design issues

For a sample (Xi)i>o from a MCMC sampler, then

T-1

b= (Fue)
t=0
u(X) = ‘;—\F/(xn{x e C}.

m Design of the MCMC sampler: crucial to control the
dependence of the Markov chain.

m Choice of V: controls the variance, set to ensure
rare-event efficiency of the algorithm.

dV]_l_

p2Vare, (u(X)) = ... = PBy | =
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Choice of V

p?Var (u(X)) = ... = pEy [3—\;] —1.
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Choice of V

p?Var (u(X)) = ... = pEy [3—\;] —1.

m For any R C C for whichr = P(X € R) can be computed
explicitly, a candidate for V is

V()=PX €| X eR).
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Choice of V

dV] 1

p?Var (u(X)) = ... = pEy [dF

m For any R C C for whichr = P(X € R) can be computed
explicitly, a candidate for V is

V()=PX €| X eR).

m Such a choice is a good one if r is close to p since

dF /r p
dF}—1_F—1%0

dV] 1

pEV[dF

ZPEV[
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Application

m LetA=(A,...,An)and B = (By,...,Bn) be independent
sequences of i.i.d. random variables. Consider the solution
Xm to the SRE

Xk = AxXg_1+Bg, fork=1,...,m,
Xo = 0,

and the problem of computing
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Application

Design of the MCMC sampler

First task is to construct a Markov chain (A¢, Bt)t>o having
Fc(:) =P(A,B € - | Xm > C),

as its invariant distribution.
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Application

Gibbs sampler

Initial state (Ao, Bg) such that X, > c.
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Application

Gibbs sampler

Initial state (Ao, Bo) such that X, > c¢. Given (At, By),
t =0,1,... the next state (A¢.1,B.1) is sampled as follows
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Application

Gibbs sampler

Initial state (Ao, Bo) such that X, > c¢. Given (At, By),
t =0,1,... the next state (A¢.1,B.1) is sampled as follows

m Randomly pick one of the variables
At,17 v 7At,m7 Bt,l7 cey Bt,m,
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Application

Gibbs sampler

Initial state (Ao, Bo) such that X, > c¢. Given (At, By),
t =0,1,... the next state (A¢.1,B.1) is sampled as follows

m Randomly pick one of the variables
At,17 v 7At,m7 Bt,l7 cey Bt,m,

m If A; x is to be updated, sample A’ from
PA e -|A' >5s)

where {A’ > s} ensures that {Xy, > ¢} when Ay is
replaced with A’.
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Application

Gibbs sampler

Initial state (Ao, Bo) such that X, > c¢. Given (At, By),
t =0,1,... the next state (A¢.1,B.1) is sampled as follows

m Randomly pick one of the variables
At,17 s 7At,m7 Bt,l7 HE) Bt,m,
m If A; x is to be updated, sample A’ from

PA e -|A' >5s)

where {A’ > s} ensures that {Xy, > ¢} when Ay is
replaced with A’.

m SetA 1 =Ar; and By 1; = By for all i except
Apyrx = A
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Application

Gibbs sampler

Initial state (Ao, Bo) such that X, > c¢. Given (At, By),
t =0,1,... the next state (A¢.1,B.1) is sampled as follows

m Randomly pick one of the variables
At,17 s 7At,m7 Bt,l7 HE) Bt,m,
m If A; x is to be updated, sample A’ from

PA e -|A' >5s)
where {A’ > s} ensures that {Xy, > ¢} when Ay is

replaced with A’.

m SetA 1 =Ar; and By 1; = By for all i except
Apyrx = A

m Similar if B¢ is to be updated.
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Application

Gibbs sampler

Proposition

The Markov chain (A¢, Bt)t>o constructed using the proposed
Gibbs sampler has the conditional distribution F¢ as its
invariant distribution.
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Application

Model assumptions

Assume heavy-tailed innovations.
m B has regularly varying tail distribution with index —a: < 0.
m A fullfills the Breiman condition,

E[A**¢] < 0o, for some ¢ > 0.
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Application

Model assumptions

Assume heavy-tailed innovations.
m B has regularly varying tail distribution with index —a: < 0.
m A fullfills the Breiman condition,

E[A**¢] < 0o, for some ¢ > 0.
m Then the following heavy-tail asymptotics holds

m
p~P(B>c)> E[A"], asc - oco.
k=1
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Application

Choice of V

Event of interest: X, = B + AmBm—1 + - +Am---AsB; > C.

Thorbjérn Gudmundsson KTH Royal Institute of Technology

Rare-event simulation



Application

Choice of V

Event of interest: X, = B + AmBm—1 + - +Am---AsB; > C.
m DefineV(-) =P(A,B € -| A,B € R) where

{A,BeR}={3k : An - Aci1Bx > C,Am, ..., Axs1 > a}.
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Application

Choice of V

Event of interest: X, = B + AmBm—1 + - +Am---AsB; > C.
m DefineV(-) =P(A,B € -| A,B € R) where

{A,BeR}={3k : An - Aci1Bx > C,Am, ..., Axs1 > a}.

m Thenr = P(A,B € R) can be computed explicitly

Thorbjérn Gudmundsson KTH Royal Institute of Technology

Rare-event simulation



Application

Choice of V

Event of interest: X, = B + AmBm—1 + - +Am---AsB; > C.
m DefineV(-) =P(A,B € -| A,B € R) where

{A,BeR}={3k : An - Aci1Bx > C,Am, ..., Axs1 > a}.

m Thenr = P(A,B € R) can be computed explicitly and
asymptotically

m
r~P(B>c)) PA>a)ka™.
k=1
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Application

Choice of a

p ~ P(B> c)zm:E[A“]k
k=1
r ~ P(B>c) zm:IP’(A > a)kak

=
Il

1
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Application

Choice of a

E[Aa]k

NE

p ~ P(B>c)

=
[

1

P(A > a)<a*k

WE

r ~ PB>c)

=
Il

1

m The free parameter a is set so that lim¢_,, p/r = 1, that is

E[A%] = P(A > a)a®.
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Application

The MCMC estimator

m The MCMC estimator is defined by

T-1

p=(2 t;u(xt))‘l. u(x) = SLEONX e ).
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Application

The MCMC estimator

m The MCMC estimator is defined by

T-1 _
p= (3 uex) L ux) = X £ C).
t=0

m For our choice of V() =P(A,B € - | A,B € R) then

u(A,B) = %I{A,B € R}.
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Application

The MCMC estimator

m The MCMC estimator is defined by
T-1
A 1 -1 dv
p= (5 ; uX)) " u(X) = GEOIX € C).
m For our choice of V() =P(A,B € - | A,B € R) then

u(A,B) = %I{A,B € R}.

m Then the MCMC estimator is

= 1T_1IA B, e R})*
p=r(+ D HAuBieR})
t=0
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Application

Efficiency

Asymptotically lime_,o, & = 1.
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Application

Efficiency

Asymptotically lime_,o, & = 1.

2 _ PP 2
pPVare, (u(A,B)) = 5 (Er[I{A.B € R}] —Er[I{A.B € R}]?)
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Application

Efficiency

Asymptotically lime_,o, & = 1.

2

p2Varg, (u(A,B)) = r—2<IEFC [I{A,B € R}] —Er_ [I{A,B ¢ R}]z)
p2 r r2
- r_<6 B F)

Thorbjérn Gudmundsson KTH Royal Institute of Technology
Rare-event simulation




Application

Efficiency

Asymptotically lime_,o, & = 1.

2 _ PP 2
pPVare, (u(A,B)) = 5 (Er[I{A.B € R}] —Er[I{A.B € R}]?)
p2 r2

- 2w

—-1—+0, asc — oo.

= |T =
N

Rare-event efficiency in 3 lines!
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Application

Geometric ergodicity

m Guarantees that the chain (A, Bt);>o mixes sufficiently and
thus that Var(p) — 0as T — oo at same speed as 1/T.
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Application

Geometric ergodicity

m Guarantees that the chain (A, Bt);>o mixes sufficiently and
thus that Var(p) — 0as T — oo at same speed as 1/T.

m Problem!

Xm =Bm +AmBm-1 + AmAm_1Bm_2 + - + Am---A2By

The chain tends to get stuck with large value for By, and
low for any other B’s...
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Application

Geometric ergodicity

m Guarantees that the chain (A, Bt);>o mixes sufficiently and
thus that Var(p) — 0as T — oo at same speed as 1/T.

m Problem!

Xm =Bm +AmBm-1 + AmAm_1Bm_2 + - + Am---A2By

The chain tends to get stuck with large value for By, and
low for any other B’s...

m Causes bias is the estimate.
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Numerical experiments

The point estimate of P(X4 > 25) as a function of simulations.

Estimate
6e-04 8e-04

4e-04

2e-04

T T T T T T
0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

Number of simulation steps
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m Innovations B are Pareto(2)-distributed.

m Returns A are Exponentially(4)-distributed.

Table: Numerical comparison of computing P(X4 > c).

c=10

MCMC

IS

Estimate
Std. deviation
Rel. error

1.043671e-02
2.476812e-04
2.373174e-02

1.041979e-02
1.837578e-04
1.763545e-02

c=1,000

MCMC

IS

Estimate
Std. deviation
Rel. error

1.044860e-06
8.879878e-08
8.498627e-02

1.140318e-06
1.459354e-08
1.279778e-02
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Numerical experiments
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