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Setup

Consider a random variable X with known distribution F
and the objective of computing

p = P(X ∈ C),

where {X ∈ C} is thought as rare in the sense that p is
small.

Assume that no analytical solution is known.

The event is rare so standard Monte Carlo simulation is
ineffective.
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The idea

Construct a Markov chain (Xt)t≥0 having

FC(·) = P(X ∈ · | X ∈ C)

as its invariant distribution.

Then extract information about the normalising constant
from the sample.
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Definition

Construct a Markov chain (Xt)t≥0 via MCMC sampler
having FC as its invariant distribution.
For any distribution V such that V ≪ FC consider

u(X ) =
dV
dF

(X )I{X ∈ C}.

Then

EFC

[

u(X )
]

=

∫

C

dV
dF

dFC =
1
p

∫

C
dV =

1
p

.

Motivates the following expression as an estimate for p

( 1
T

T−1
∑

t=0

u(Xt)
)−1

.
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Design issues

For a sample (Xt)t≥0 from a MCMC sampler, then

p̂ =
( 1

T

T−1
∑

t=0

u(Xt)
)−1

,

u(X ) =
dV
dF

(X )I{X ∈ C}.

Design of the MCMC sampler: crucial to control the
dependence of the Markov chain.
Choice of V : controls the variance, set to ensure
rare-event efficiency of the algorithm.

p2
VarFC

(

u(X )
)

= . . . = pEV

[dV
dF

]

− 1.
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Choice of V

p2
Var

(

u(X )
)

= . . . = pEV

[dV
dF

]

− 1.

For any R ⊆ C for which r = P(X ∈ R) can be computed
explicitly, a candidate for V is

V (·) = P(X ∈ · | X ∈ R).

Such a choice is a good one if r is close to p since

pEV

[dV
dF

]

− 1 = pEV

[dF/r
dF

]

− 1 =
p
r
− 1 → 0.
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Setup

Let A = (A1, . . . ,Am) and B = (B1, . . . ,Bm) be independent
sequences of i.i.d. random variables. Consider the solution
Xm to the SRE

Xk = AkXk−1 + Bk , for k = 1, . . . ,m,

X0 = 0,

and the problem of computing

p = P(Xm > c).
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Design of the MCMC sampler

First task is to construct a Markov chain (At ,Bt)t≥0 having

FC(·) = P(A,B ∈ · | Xm > c),

as its invariant distribution.
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Gibbs sampler

Initial state (A0,B0) such that Xm > c. Given (At ,Bt),
t = 0,1, . . . the next state (At+1,Bt+1) is sampled as follows

Randomly pick one of the variables
At,1, . . . ,At,m,Bt,1, . . . ,Bt,m,

If At,k is to be updated, sample A′ from

P(A′ ∈ · | A′ > s)

where {A′ > s} ensures that {Xm > c} when At,k is
replaced with A′.

Set At+1,i = At,i and Bt+1,i = Bt,i for all i except
At+1,k = A′.

Similar if Bt,k is to be updated.
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Gibbs sampler

Proposition

The Markov chain (At ,Bt)t≥o constructed using the proposed
Gibbs sampler has the conditional distribution FC as its
invariant distribution.
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Model assumptions

Assume heavy-tailed innovations.

B has regularly varying tail distribution with index −α < 0.

A fullfills the Breiman condition,

E[Aα+ε] < ∞, for some ε > 0.

Then the following heavy-tail asymptotics holds

p ∼ P(B > c)
m
∑

k=1

E[Aα]k , as c → ∞.
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Choice of V

Event of interest: Xm = Bm + AmBm−1 + · · · + Am · · ·A2B1 > c.

Define V (·) = P(A,B ∈ · | A,B ∈ R) where

{A,B ∈ R} = {∃k : Am · · ·Ak+1Bk > c,Am, . . . ,Ak+1 > a}.

Then r = P(A,B ∈ R) can be computed explicitly and
asymptotically

r ∼ P(B > c)
m
∑

k=1

P(A > a)k aαk .
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Choice of a

p ∼ P(B > c)
m
∑

k=1

E[Aα]k

r ∼ P(B > c)
m
∑

k=1

P(A > a)kaαk

The free parameter a is set so that limc→∞ p/r = 1, that is

E[Aα] = P(A > a)aα.
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The MCMC estimator

The MCMC estimator is defined by

p̂ =
( 1

T

T−1
∑

t=0

u(Xt)
)−1

, u(X ) =
dV
dF

(X )I{X ∈ C}.

For our choice of V (·) = P(A,B ∈ · | A,B ∈ R) then

u(A,B) =
1
r

I{A,B ∈ R}.

Then the MCMC estimator is

p̂ = r
( 1

T

T−1
∑

t=0

I{At ,Bt ∈ R}
)−1.
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Efficiency

Asymptotically limc→∞
p
r = 1.

p2
VarFC

(

u(A,B)
)

=
p2

r2

(

EFC

[

I{A,B ∈ R}
]

− EFC

[

I{A,B ∈ R}
]2
)

=
p2

r2

( r
p
−

r2

p2

)

=
p
r
− 1 → 0, as c → ∞.

Rare-event efficiency in 3 lines!
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Geometric ergodicity

Guarantees that the chain (At ,Bt)t≥0 mixes sufficiently and
thus that Var(p̂) → 0 as T → ∞ at same speed as 1/T .

Problem!

Xm = Bm + AmBm−1 + AmAm−1Bm−2 + · · · + Am · · ·A2B1

The chain tends to get stuck with large value for Bm and
low for any other B’s...

Causes bias is the estimate.
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Figure

The point estimate of P(X4 > 25) as a function of simulations.
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Table

Innovations B are Pareto(2)-distributed.

Returns A are Exponentially(4)-distributed.

Table: Numerical comparison of computing P(X4 > c).

c = 10 MCMC IS
Estimate 1.043671e-02 1.041979e-02

Std. deviation 2.476812e-04 1.837578e-04
Rel. error 2.373174e-02 1.763545e-02
c = 1, 000 MCMC IS
Estimate 1.044860e-06 1.140318e-06

Std. deviation 8.879878e-08 1.459354e-08
Rel. error 8.498627e-02 1.279778e-02
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